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a b s t r a c t 

Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior pa- 

rameter distribution with the non-linear dependency structures and multiple modes often present in hy- 

drological models. However, the explorative capabilities and efficiency of the sampler depends strongly on 

the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled 

the Particle Evolution Metropolis Sequential Monte Carlo (PEM–SMC) algorithm, which is well suited to 

handle unknown static parameters of hydrologic model. The PEM–SMC sampler is inspired by the works 

of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differ- 

ential evolution algorithm and Metropolis–Hasting algorithm into the framework of SMC. We also prove 

that the sampler admits the target distribution to be a stationary distribution. Two case studies including 

a multi-dimensional bimodal normal distribution and a conceptual rainfall–runoff hydrologic model by 

only considering parameter uncertainty and simultaneously considering parameter and input uncertainty 

show that PEM–SMC sampler is generally superior to other popular SMC algorithms in handling the high 

dimensional problems. The study also indicated that it may be important to account for model structural 

uncertainty by using multiplier different hydrological models in the SMC framework in future study. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Over the past few decades, considerable progress has been

made in the development of hydrologic models, which are now

widely used for different purposes such as flood forecasting, urban

planning and water resources management ( Pokhrel et al., 2008;

Clark et al., 2015 ). It is well recognized that parameter estima-

tion (model calibration) is a necessary step to improve model ac-

curacy, and how to obtain appropriate model parameters has long

been a subject of debate within the hydrologic community ( Gupta

et al., 1998; Montanari, 2005; Marshall et al, 2004; Montanari and

Koutsoyiannis, 2012; Mendoza et al., 2015 ). Enabled by increasing

computer power, tremendous advances have been achieved in pa-

rameter estimation methods (e.g., Duan et al., 1992; Gupta et al.,

1998; Bates and Campbell, 2001; Vrugt et al., 2009; Pokhrel et al.,

2012; Vrugt, 2016 ). Among them, Bayesian inference provides an
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deal platform for assessing parameter values by simultaneously

ccounting for both measurement and model structure uncertain-

ies ( Thiemann et al., 2001; Jeremiah et al., 2011; Gao and Zhang,

012; Zhu et al., 2014 ), and is becoming increasingly popular in

nvironment science ( Clark, 2005 ). 

Given the analytically intractable nature of the hydrologic mod-

ls, implementation of Bayesian inference is usually aided by

arkov chain Monte Carlo (MCMC) techniques ( Smith and Mar-

hall, 2008 ). In practice, the major difficulty associated with us-

ng MCMC is the need to assess convergence ( Fan et al., 2008 ).

lthough there are several indices to help gauge convergence, for

omplex models one may never be completely sure ( Clark, 2005 ).

equential Monte Carlo (SMC) samplers (also known as particles

lters) provide an alternative framework of drawing samples from

he posterior distribution, which does not depend on Markov chain

roperty, thereby avoiding the difficulty of ensuring chain con-

ergence to the posterior distribution ( Fan et al., 2008; Jeremiah

t al., 2011 ). Traditionally, SMC samplers were developed primarily

or estimation of the dynamic states in a system through various

https://doi.org/10.1016/j.advwatres.2018.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2018.02.007&domain=pdf
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eweighting, resampling and move strategies ( Arulampalam et al.,

002 ). In hydrologic models, many (if not all) parameters that rep-

esent conceptual or effective properties of landscape should be re-

arded as time-invariant (static), and their meaningful values can

nly be obtained through the parameter-calibration method ( Ajami

t al., 2007; Mendoza et al., 2015 ). Now, several methods have

een proposed to handle unknown static model parameters us-

ng the SMC samplers, including the state augmentation method,

hich simply treats the static parameters as dynamic states and

ransfer the parameter optimization to state-variable filtering prob-

em (e.g., Moradkhani et al., 2005, 2012; Salamon and Feyen, 2009;

agarajan et al., 2011; Noh et al., 2011; Vrugt et al., 2013; Ab-

aszadeh et al., 2018 ), and the dynamic partial posterior distribu-

ion method which sequentially incorporates increasing amounts

f observations into the posterior distribution (e.g., Chopin, 2002 ).

nother approach is the so-called geometric bridge method ( Del

oral et al., 2006; Fan et al., 2008; Jeremiah et al., 2011 , 2012),

hich constructs an inhomogeneous sequence of distributions to

ove smoothly from a tractable initial distribution to the target

istribution through a sequence of intermediary distributions. 

The SMC sampler implemented using geometric bridge method

as advantages in preserving the static nature of the unknown pa-

ameters and inferring the parameter posterior distribution based

n the whole observations ( Lee and Chia, 2002 ). In spite of these

dvantages, the SMC sampler has a serious drawback, which is

he well known particle impoverishment problem. To improve par-

icle diversity and quality, the particles usually need to be moved

y using the Markov Chain Monte Carlo (MCMC) transition kernel

i.e., random walk Metropolis (RWM) algorithm ( Metropolis et al.,

953 ) and adaptive random walk Metropolis (ARM) algorithm

 Chopin, 2002; Fan et al., 2008; Jeremiah et al., 2011 , 2012)].

hopin (2002) pointed out that the efficiency in the move step is

ritical since it is the most computationally demanding step. Thus,

t is significantly important to develop appropriate candidate-

enerating algorithms in improving the efficiency of the SMC sam-

ler ( Owen and Tribble, 2005 ). Inspired by the success of the

enetic and evolution algorithm ( Holland, 1975; Storn and Price,

997 ) in optimization problems, we proposed a new candidate-

enerating method in the framework of SMC by employing the two

enetic-styled operators (crossover and mutation). Specifically, the

ew algorithm is implemented by incorporating some attractive

eatures of genetic and evolutionary algorithm to generate candi-

ates as well as the Metropolis–Hasting algorithm into the frame-

ork of SMC to evolve the particles to the target distribution. This

hilosophy is not completely new. In previous studies, some au-

hors have tried to combine the genetic or evolutionary algorithms

ith population MCMC (e.g., Liang and Wong, 2001; ter Braak,

0 06; Vrugt et al., 20 08 ). Also, considerable effort s have been paid

o introduce the genetic algorithm into the particle filters ( Uosaki

t al., 2004; Park et al., 2007; Li et al., 2013; Abbaszadeh et al.,

018 ). However, these works mainly focus on estimating the state

ariables of a dynamic system rather than the unknown model pa-

ameters. In this study, we describe how to embed the genetic

nd evolutionary algorithm into the framework of SMC for esti-

ating the static model parameters, and prove that the proposed

lgorithm in move step is an MCMC transition kernel which ad-

its the intermediary distribution to be stationary. In addition,

here is a growing realization that parameter estimation in hy-

rological models is significantly affected by uncertainties in the

nput-forcing data ( Kavetski et al., 20 02, 20 06; Ajami et al., 20 07;

rugt et al., 2008 ). To get unbiased parameter estimations and de-

ect the genuine model structure inadequacies, the forcing uncer-

ainty should be described explicitly with the system through in-

ut error models ( Kavetski et al., 20 02, 20 06; Ajami et al., 2007;

rugt et al., 2008 ). In such conditions, the number of variables

eeded to be estimated (including hydrological model parameters
nd “latent variables” in the input error model) increase consid-

rably and often cause dimensionality issues ( Ajami et al., 2007 ).

hus, it is needed for the SMC samplers to be able to handle the

igh dimensional problems, and the applicability of the samplers

or analyzing forcing uncertainty should be assessed systematically

 Montanari, 2007 ). To achieve this propose, the efficiency and ef-

ectiveness of the proposed SMC sampler were tested and com-

ared with other SMC samplers using different MCMC transitional

ernels (i.e., RWM and ARW algorithms) through two case studies.

he first one uses a synthetic bimodal normal distribution with di-

ensions varying from 5 to 50, and the second one uses a concep-

ual rainfall–runoff model by dealing only with model parameter

ncertainty and simultaneously with model parameter and input

ncertainties. 

The paper is organized as follows. Section 2 presents a sum-

ary of the Bayesian inference, followed by a detailed description

f the SMC samplers in Section 3 , including the principle of the

eometric bridge method, the procedures of the SMC sampler, and

he candidate generating methods in move step. Section 4 provides

he results of the two case studies and compares the performance

f each sampler. Finally, Section 5 presents the main conclusions

f the study and the scope for future work. 

. Bayesian inference 

A hydrological model can be defined as: 

 t = f ( x t ; θ ) + ε t (1) 

here y t is the observed data at time t = {1, 2, …, n }; f ( x t ; θ ) is

he corresponding model output (simulation); x t is the model in-

ut at time t ; θ ∈ R d is a d -dimensional vector of unknown model

arameters; and εt represents the measurement error, consisting

he combined errors from modeling uncertainties. 

The Bayesian inference treats hydrologic model parameters, θ ,

s probabilistic variables, and the posterior parameter distributions

an be expressed as: 

p(θ | y 1: n ) = 

p(θ ) p( y 1: n | θ ) 

p( y 1: n ) 
∝ p(θ ) p( y 1: n | θ ) (2)

here y 1: n = { y t ; t = 1 , 2 , . . . , n } represents the set of all available

bservations; p ( θ ) and p(θ | y 1: n ) signify the prior and posterior pa-

ameter distribution, respectively; p( y 1: n | θ ) denotes the model like-

ihood for observed data y 1: n ; and p( y 1: n ) is the normalization

onstant so that the posterior parameter distribution integrates

o unity. In the most simplistic case with scalar valued measure-

ent ( y t ∈ R 1 ; t = 1 , 2 , . . . , n ) and normal homoscedastic, uncorre-

ated error terms, the likelihood function can be written as: 

p( y 1: n | θ ) = (2 πσ 2 ) −n/ 2 
n ∏ 

t=1 

exp 

{
− [ y t − f ( x t ; θ )] 

2 

2 σ 2 

}
(3) 

here σ is an estimate of the standard deviation of the mea-

urement error. Traditionally, σ can be included into the analysis

xplicitly (i.e., assuming σ is uniform over log σ ; Gelman et al.,

995; Bates and Campbell, 2001 ) and treated as one the model

arameters, which yields a complete posterior distribution of σ .

owever, this method artificially increased the parameter dimen-

ion of the problem and may result in unreasonable estimations

f the parameter values ( Kavetski et al., 2006 ). In this study, σ
as estimated by using the analytical method ( Braswell et al.,

005; Zhu et al., 2014 ), which is to find the value of σ that max-

mizes log [ p( y 1: n | θ )] for a given parameter vector. By differentiat-

ng log [ p( y 1: n | θ )] with respect to σ , we can obtain: 

a = 

√ 

1 

n 

n ∑ 

t=1 

[ y t − f ( x t ; θ )] 
2 

(4) 

We then used σ a to replace σ in Eq. (3) . 
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3. Sequential Monte Carlo sampling 

The sequential Monte Carlo (SMC) sampling approach is a gen-

eralization of importance sampling that generates a set of sam-

ples from p(θ | y 1: n ) with associated weights (also called particles )

and calculates estimates based on these weighted samples. As the

number of samples become very large, the Monte Carlo approxi-

mation can equivalently represent the functional description of the

posterior distribution ( Arulampalam et al., 2002 ). However, since

the posterior distribution is hard to sample directly, SMC tack-

les this problem by introducing a sequence of intermediary distri-

butions with the final distribution given by the desired posterior

( Fan et al., 2008 ). In this study, the intermediary distribution is

constructed using the geometric bridge method ( Del Moral et al.,

2006; Fan et al., 2008; Jeremiah et al., 2011,2012 ): 

πs (θ ) ∝ p 0 (θ ) 1 −βs p (θ | y 1: n ) 
βs (5)

where p 0 ( θ ) and π s ( θ ) denote the initial and the s th distribution

in the sequence ( s = 0, 1, …, S ), respectively; and { βs } is a sequence

of scalar powers such that 0 ≤ β0 ≤ β1 ≤ … ≤ βS = 1, which al-

lows a gradual transition of π s ( θ ) from the initial sampling dis-

tribution, π0 ( θ ) ∝ p 0 ( θ ), when β0 = 0, to the posterior distribution,

πS (θ ) ∝ p(θ | y 1: n ) , when βS = 1. How to specify the distributional

sequence { βs } still remains an open research question ( Fan et al.,

2008 ). Following Jeremiah et al. (2011, 2012 ), an exponential { βs }

sequence is used in this study. 

Suppose that an initial population of N particles (i.e. parameter

vectors θ ) are generated from the initial distribution π0 ( θ ) ∝ p 0 ( θ ),

from which direct sampling is possible. Each particle is denoted

by θ0 
j 

and allocated a weight w 

0 
j 
≡ 1 /N for j = 1, 2, …, N , so that

{ θ0 
j 
, w 

0 
j 
} is a weighted particle at initial stage s = 0. The SMC sam-

pling approach then uses the weighted particles from π s − 1 ( θ )

(with s = 1, 2, …, S ) to produce particles from distribution π s ( θ )

through reweighting, resampling and move processes, which are

described in detail below. 

3.1. Reweighting 

Given N weighted particles { θ s −1 
j 

, w 

s −1 
j 

} ( j = 1, 2, …, N ) from

π s − 1 ( θ ) at stage s − 1 (with s = 1, 2, …, S ), then by setting θ s 
j 
=

θ s −1 
j 

, and 

w 

s 
j = w 

s −1 
j 

πs (θ s 
j 
) 

πs −1 (θ
s −1 
j 

) 
(6)

The resulting particles, { θ s 
j 
, w 

s 
j 
} , are now drawn from the distri-

bution π s ( θ ). Eq. (6) will increase the weight of particles that have

higher density under π s ( θ ) than under π s − 1 ( θ ), and decrease the

weight of particles that have lower density under π s ( θ ) than under

π s − 1 ( θ ). 

3.2. Resampling 

A common problem with the SMC sampling approach is the de-

generacy phenomenon, where as s increases, all but one particle

will have negligible weight ( Arulampalam et al., 2002 ). This im-

plies that a large computational effort is devoted to updating par-

ticles whose contribution to posterior estimates and predictions is

almost zero. The aim of resampling step is to discard “bad” par-

ticles with negligible importance and to replace them with exact

copies of more promising samples ( Vrugt et al., 2013 ). A suitable

measure of degeneracy of the algorithm is the effective sample size
a  
 N eff), defined as ( Jeremiah et al., 2011,2012; Vrugt et al., 2013 ): 

 e f f = 

1 

N ∑ 

i =1 

(w 

s 
j 
) 

2 

(7)

In practice, resampling is performed whenever N eff is less than

N , where r ∈ [0, 1] is a pre-specified constant typically taken to be

/2 ( Fan et al., 2008 ). The resulting particle is in fact an i.i.d sample

rom the discrete distribution { θ s 
j 
, w 

s 
j 
} ( Arulampalam et al., 2002 ),

nd the weights are reset to w 

s 
j 
= 1 /N for j = 1, 2, …, N ( Fan et al.,

008; Jeremiah et al., 2011 , 2012 ). Until now, a wide-variety of

esampling methods including systematic, stratified, residual and

ultinomial resampling has been developed in the statistical liter-

ture. Following Arulampalam et al. (2002) , the systematic resam-

ling scheme is selected in this study since it is simple to imple-

ent and minimizes the Monte Carlo variance. 

.3. Move 

Although the resampling step reduces the effects of the degen-

racy problem, it may lead to a loss of diversity among the par-

icles as the resulting sample will contain many repeated points,

hich is known as sample impoverishment . Let { θ s 
j 
, w 

s 
j 
} ( j = 1, 2, …,

 ) denote particles at current stage s after reweighting and (pos-

ibly) resampling steps. To improve particle diversity and quality,

ach sample is moved according to a Markov Chain Monte Carlo

MCMC) transition kernel, K s , so that θ
s 

j ∼ K s (θ s 
j 
, �) . Generally, the

uilding of a MCMC transition kennel K s proceeds in the follow-

ng three steps. First, a candidate particle θ
s 

j is sampled from a

roposal density q s (�| θ s 
j 
) that depends on the present particle, θ s 

j 
.

ext, the candidate particle is either accepted or rejected using the

etropolis–Hasting (M–H) acceptance probability: 

= min 

{
1 , 

πs ( θ
s 

j ) q s (θ
s 
j 
| θ s 

j ) 

πs (θ s 
j 
) q s ( θ

s 

j | θ s 
j 
) 

}
(8)

Finally, with probability α set θ s 
j 
= θ

s 

j , else leave θ s 
j 

unchanged.

Efficiency of the move step significantly depends on an appro-

riate selection of the candidate-generating methods ( Owen and

ribble, 2005 ). The earliest and most general candidate-generating

pproach is the random walk Metropolis (RWM) algorithm

 Metropolis et al., 1953 ). In this approach, the candidate sample
s 

j is drawn from a proposal density q s ( •| •) that depends on the

urrent particle, θ s 
j 

and is assumed to be fixed and symmetric (i.e.,

 s ( θ
s 

j | θ s 
j 
) = q s (θ s 

j 
| θ s 

j ) ). A natural choice for q s (�| θ s 
j 
) in practice is

he multivariate normal density, so that θ
s 

j ∼ N d (θ
s 
j 
, γ I d ) . Here, I d 

enotes the d -dimensional identity matrix, and γ is the scaling

actor for which we have used the value γ = 2 . 38 / 
√ 

2 d given by

oberts and Rosenthal (1998) . To fully use the information gained

y the particle system itself, the adaptive random walk Metropolis

ARM) algorithm is proposed and has been widely used in liter-

ture ( Chopin, 2002; Fan et al., 2008; Jeremiah et al., 2011 , 2012 ).

or the ARM algorithm, the covariance of the multivariate nor-

al proposal density is continuously adapted toward the target

istribution based on particles in previous populations. Follow-

ng Chopin (2002) , the proposal density is defined as q s (�| θ s 
j 
) =

 d (θ
s 
j 
, 	s −1 ) , where 	s − 1 denotes the weighted sample covariance

atrix of previous particle populations, { θ s −1 
j 

, w 

s −1 
j 

} , ( j = 1, 2, …,

 ). 

The new candidate-generating method presented here is named

s Particle Evolution Metropolis (PEM), which uses genetic and

volution operators to generate candidates ( Holland, 1975; Storn

nd Price, 1997 ), and merges the strength of the M–H algorithm
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o evolve the particle to the target distribution. In the context of

enetic or evolution algorithm, the particle ( θ s 
j 
, j = 1, 2, …, N ) at

urrent stage s is called a chromosome or an individual , and the

et of N particles form a population. Then, the population is con-

inuously updated toward better solutions in the parameter space

y selection and modification procedures. Noticeably, the particles

ave been selected according to their weights in the resampling

tep of the SMC algorithm, which is functionally similar in to the

oulette wheel selection procedure used in genetic algorithm. Thus,

nly two genetic-styled operators, crossover and mutation , are em-

loyed in this step, and they serves to diversify the individuals in

he population. Notably, the chromosomes can be coded as either

inary or real numbers. In applications to practical problems, pre-

ious studies have demonstrated that the genetic-styled operators

re more efficient for real-coded chromosomes than those coded

n binary numbers ( Liang and Wong, 2001 ). Thus, the real-coded

hromosomes were used in this study. 

In the crossover operator, one parental chromosome pair, θ s 
i 

and
s 
j 

( i 	 = j ), is selected from the current population without replace-

ent and mated to produce a new offspring pair, θ
s 

i and θ
s 

j accord-

ng to the random selection procedure as the weights of chromo-

ome were reset to be equal after the resampling step. Here, the

imple one-point crossover operator is used to generate offspring

 θ
s 

i and θ
s 

j ), which is operated as follows. First, an integer crossover

oint is drawn uniformly on {1, 2, …, d } (where d is the dimension

f parameter space); then θ
s 

i and θ
s 

j are produced by swapping the

arameters to the right of the crossover point between parents ( θ s 
i 

nd θ s 
j 
) with a predefined crossover probability P c . After crossover,

he new offspring pair is accepted with probability min {1, r c } ac-

ording to the M–H rule: 

 c = 

πs ( θ
s 

i ) πs ( θ
s 

j ) J s ((θ
s 
i 
, θ s 

j 
) | ( θ s 

i , θ
s 

j )) 

πs (θ s 
i 
) πs (θ s 

j 
) J s (( θ

s 

i , θ
s 

j ) | (θ s 
i 
, θ s 

j 
)) 

(9) 

here J s ( •| •) denotes the transfer probability between the parental

(θ s 
i 
, θ s 

j 
) and the offspring ( θ

s 

i , θ
s 

j ) pairs, and J s (( θ
s 

i , θ
s 

j ) | (θ s 
i 
, θ s 

j 
)) =

 ((θ s 
i 
, θ s 

j 
) | 
) × P (( θ

s 

i , θ
s 

j ) | (θ s 
i 
, θ s 

j 
)) . Here, P ((θ s 

i 
, θ s 

j 
) | 
) denotes

he selection probability of one pair from the parental popula-

ion 
, and P (( θ
s 

i , θ
s 

j ) | (θ s 
i 
, θ s 

j 
)) is the generating probability of

ffspring pair ( θ
s 

i , θ
s 

j ) from the parental chair (θ s 
i 
, θ s 

j 
) . It can be

roved that the transfer probability from the parental pair (θ s 
i 
, θ s 

j 
)

o the offspring pair ( θ
s 

i , θ
s 

j ) is equal to the reverse transfer, i.e.,

 s (( θ
s 

i , θ
s 

j ) | (θ s 
i 
, θ s 

j 
)) = J s ((θ s 

i 
, θ s 

j 
) | ( θ s 

i , θ
s 

j )) (see theorem in Supple-

ent 1 ). If the proposal is accepted, the current parental pair

(θ s 
i 
, θ s 

j 
) in the population is replaced by ( θ

s 

i , θ
s 

j ) , otherwise the

opulation remains unchanged. Noticeably, if mating does not take

lace in the crossover procedure, the parents always survive to the

ext stage according to the M-H rule. After the crossover operators

which repeat N /2 times), the population is updated and denoted

y 
 = { θ s 
j 
, j = 1 , 2 , . . . , N} . 

To increase the diversity of the parameter population, the differ-

ntial mutation procedure is used to modify the real-coded chro-

osomes of offspring ( Storn and Price, 1997 ). That is, the current

article, θ s 
j 

( j = 1, 2, …, N ), is mutated according to: 

s 

j = θ s 
j + γ (θ s 

r 1 
− θ s 

r 2 
) + ζd (10) 

here r 1 and r 2 are integer values drawn without replacement

rom {1, …, j − 1, j + 1, …, N }; γ = 2 . 38 / 
√ 

2 d denotes the jump rate;

nd ζ d ∼ N d (0, b ∗) is drawn from a normal density with small stan-

ard deviation, say b ∗ = 10 −6 . According to the M–H rule, the new

hromosome θ
s 

j is accepted with probability min {1, r m 

}, where r m 
s calculated as: 

 m 

= 

πs ( θ
s 

j ) J s (θ
s 
j 
| θ s 

j ) 

πs (θ s 
j 
) J s ( θ

s 

j | θ s 
j 
) 

(11) 

nd J s ( • | • ) denotes the transition probability between θ s 
j 

and θ
s 

j .

er Braak (2006) has proved that the transfer probability from θ
s 

j 

o θ s 
j 

is the same as that from θ s 
j 

to θ
s 

j , i.e., J s ( θ
s 

j | θ s 
j 
) = J s (θ s 

j 
| θ s 

j ) .

f the proposal is accepted, the current parental chromosome θ s 
j 

in

he population is replaced by θ
s 

j , otherwise the population remains

nchanged. These operators (selection and mutation) are repeated

 times and the population is updated again. 

We proved that the PEM algorithm maintains the detailed bal-

nce and admits π s ( • ) as the unique stationary distribution at

ach stage s (see theorem in Supplement 1 ). There are only three

asic control variables in PEM–SMC sampler: N , the number of

articles in population, S , the number of evolutions and P c , the

rossover probability (which is set to be 0.6 in this study). In addi-

ion, it is inherently parallel and hence lends itself to computation

ia a parallel machine or a network of computers. The pseudo-code

f the algorithm is given below. 

STEP 1: Initialization: 

(a) Draw an initial population { θ0 
j 
} ( j = 1, 2, …, N ) from p 0 ( θ ),

and set weights w 

0 
j 
= 1 /N. 

(b) Identify the sequence 0 ≤ β0 ≤ β1 ≤ … ≤ βS = 1. 

(c) Set iteration index s = 1, and effective sample size constant,

r ∈ [0, 1]. 

FOR s ← 1, 2, …, S DO (Stage Evolution) 

STEP 2: Reweighting : 

(a) Set θ s 
j 
= θ s −1 

j 
( j = 1,…, N ), and calculate the weight, w 

s 
j 
=

w 

s −1 
j 

πs (θ s 
j 
) 

πs −1 (θ
s −1 
j 

) 
. 

(b) Normalize the weight so that 
∑ N 

j=1 w 

s 
j 
= 1 . 

STEP 3: Resampling? 

(a) Calculate the effective sample size, N e f f = 1 / 
∑ N 

i =1 (w 

s 
j 
) 2 . 

(b) If N eff < rN , go to the next step; otherwise return to STEP 2 

STEP 3A: Systematic resampling 

(a) Resample from { θ s 
j 
, w 

s 
j 
} ( j = 1, 2, …, N ) using the systematic

resampling procedure. 

(b) Set w 

s 
j 
= 1 /N ( j = 1, 2, …, N ). 

STEP 3B: Move using the PEM algorithm to increase the diversity

f particles 

FOR i ← 1, 2, …, N /2 DO (crossover operator using one pair chro-

osome) 

(a) Randomly select one parental chromosome pair, θ s 
i 

and θ s 
j 

( i 	 = j ), and create a new offspring pair, θ
s 

i and θ
s 

j using the

one-point crossover operator. 

(b) With probability min { 1 , πs ( θ
s 
i ) πs ( θ

s 
j ) J s ((θ

s 
i 
,θ s 

j 
) | ( θ s 

i , θ
s 
j )) 

πs (θ s 
i 
) πs (θ s 

j 
) J s (( θ

s 
i , θ

s 
j ) | (θ s 

i 
,θ s 

j 
)) 

} , set θ s 
i 

=

θ
s 

i and θ s 
j 
= θ

s 

j , else leave θ s 
i 

and θ s 
j 

unchanged. 

END FOR (Crossover Operator Using One Pair Chromosome) 

FOR i ← 1, 2, …, N DO (Mutation Operator Using One Chromo-

ome) 

(a) Uniformly select one chromosome, θ s 
j 
( j = 1, 2, …, N ) from the

present population, and create a new chromosome θ
s 

j by the

mutation operator. 
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Fig. 1. The posterior marginal distribution of the 5-dimension bimodal normal distribution derived by (a) RWM–SMC, (b) ARM–SMC and (c) PEM–SMC samplers. The solid 

black line depicts the target distribution. 

Table 1 

Statistical properties about the average Euclidean distance of the SMC samplers estimated mean values and standard deviations from the true values over 100 independent 

runs for the bimodal normal distribution. 

Dimension RWM–SMC ARM–SMC PEM–SMC 

Mean(|| E ||) SD(|| E ||) Mean(|| E ||) SD(|| E ||) Mean(|| E ||) SD(|| E ||) 

d = 5 0.53 0.41 0.45 0.51 0.46 0.43 

d = 10 1.14 3.28 1.12 3.31 1.06 1.21 

d = 20 1.87 5.09 29.7 20.1 1.68 3.08 

d = 30 4.01 72.5 N/A N/A 3.54 8.67 

Mean(|| E ||) denotes the average Euclidean distance of the SMC samples derived posterior mean values from their true values; thus Mean ( || E|| ) = [ 
∑ d 

i =1 ( ̄θi − θi ) 
2 ] 1 / 2 , where 

θ̄i and θ i is the estimated and true parameter value in the i th dimension, respectively. Similarly, SD(|| E ||) denotes the average Euclidean distance of the SMC samples 

derived standard deviations from their true values. To reduce the influence of sampling variability, the presented statistics denote over 100 independent runs. 

 

 

 

 

 

 

 

 

 

 

 

c  

B

4

 

m  

v  

(

π  

w  

c  

t  

f  

s  

f

 

m  
(b) With probability min { 1 , πs ( θ
s 
j ) J s (θ

s 
j 
| θ s 

j ) 

πs (θ s 
j 
) J s ( θ

s 
j | θ s 

j 
) 
} , set θ s 

j 
= θ

s 

j , else leave

θ s 
j 

unchanged. 

END FOR (Mutation Operator Using One Chromosome) 

END FOR (Stage Evolution) 

4. Case studies 

In this section, we conducted two case studies to compare

the performance of the SMC sampler with different candidate-

generating algorithms in exploring the parameter space. For con-

venience, the SMC sampler utilizing the RWM, ARM and PEM algo-

rithms to generate candidates is named as RWM–SMC, ARM–SMC

and PEM–SMC, respectively. In the first case study, a synthetic ex-

ample is constructed on the basis of a mixture of multivariate nor-

mal distribution with a well-separated bimodal response surface.

The second example considers application of the algorithms to pa-

rameter inference in the hydrologic setting, featuring a lumped
onceptual rainfall–runoff watershed model with data from the

ass River watershed, Australia. 

.1. Case study 1: synthetic bimodal normal mixture 

To emulate the common feature of the parameter surface with

ultiple modes in hydrological modeling, the first case study in-

olves a synthetic multi-dimensional bimodal normal distribution

 Smith and Marshall, 2008; Vrugt et al., 2009 ): 

(θ ) = 

1 

3 

N d (θ ;−5 , I d ) + 

2 

3 

N d (θ ; 5 , I d ) (12)

here − 5 and 5 are d -dimensional vectors. To explore the effi-

iency and effectiveness of the SMC samplers in simulating the

arget distribution in different dimensions, the test study was per-

ormed in dimensions d = 5, 10, 20 and 30. The feasible parameter

pace was taken to be a uniform distribution between −10 and 10

or each parameter. 

In the 5-dimensional case, Fig. 1 compares histograms of the

arginal posterior distribution of parameter derived from the SMC
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Fig. 2. Transitions of the parameters in 3 selected particles during the sampling path to the 5-dimension bimodal normal posterior target distribution using (a) RWM–SMC, 

(b) ARM–SMC and (c) PEM–SMC samplers. The actual target parameter values −5 and + 5 are represented by ‘ ×’ and ‘ + ’ at the right hand side, respectively. For more 

explanation, please refer to the text. Different particle is coded with a different symbol and color. 

Fig. 3. The posterior marginal distribution of dimensions {1, 5, 10, 15, 20} of the 20-dimension bimodal normal distribution generated by (a) RWM–SMC, (b) ARM–SMC and 

(c) PEM–SMC samplers. The solid black line depicts the target distribution. 
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Fig. 4. Transitions of the sampled parameters of dimensions {1, 5, 10, 15, 20} in 3 randomly selected particles during the sampling path using (a) RWM–SMC, (b) ARM–SMC 

and (c) PEM–SMC samplers. The actual target parameter values −5 and + 5 are represented by ‘ ×’ and ‘ + ’ at the right hand side, respectively. For more explanation, please 

refer to the text. Different particle is coded with a different symbol and color. 
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samplers with the actual target distribution. Obviously, both modes

of the target distribution are well identified by the three SMC

samplers (with particle number N = 300). In addition, the statis-

tical characteristics of the average Euclidean distance of the true

means and standard deviations of the prior defined probability dis-

tribution from the respective values estimated with the SMC sam-

plers are summarized in Table 1 . The results indicated that the

SMC samplers can give a reasonable estimation of the true val-

ues of the prior defined probability distribution. To check the con-

vergence status of the SMC algorithms, the transitions of param-

eters of the selected particles during the sampling paths are il-

lustrated in Fig. 2 . Note, graphical examination about the conver-

gences of the algorithms for other particles yields a similar pic-

ture as that presented in Fig. 2 . It demonstrates that in the initial

stages ( s < 450), the parameter values of the particles are uniformly

distributed in the parameter space. At a later stage ( s > 450), they

all tend to converge to a limiting distribution that appear relative

tight and encompass the actual target parameter values ( −5 and

+ 5, represented by ‘ ×’ and ‘ + ’ at the right hand side, respectively).

However, the mixing of the particles generated by the RWM–SMC

algorithm is quite poor. It is generally difficult for the particles

to jump from one mode to the other, and the individual particle

tends to collapse into a single region of highest attraction ( Fig. 2 a).

On the contrary, the other two SMC samplers (i.e., ARM–SMC and

PEM–SMC) exhibit relatively good explorative and mixing capabili-

ties partially due to their abilities in exchanging information about

the search space gained by different launched particles ( Fig. 2 b and

c). The performances of the SMC- samplers in dimension d = 10 are

similar to that in d = 5. To obtain proper estimations of posterior
arameter distribution, the particle number should be larger than

00. 

For the 20-dimensional case, the histograms of the marginal

osterior distribution of dimensions {1, 5, 10, 15, 20} generated

sing the SMC samplers (with particle number N = 1500) are pre-

ented in Fig. 3 , as well as providing the actual target distribu-

ion (black line). It is clear that the ARM–SMC sampler falsely con-

erged to local optimum, and only one mode was identified by it.

lso, the average Euclidean distance of the PEM–SMC estimated

ean values and standard deviations from the true values is closer

o zero than that of the other SMC samples, suggesting that the

EM–SMC sampler outperforms other SMC samplers in estimat-

ng the 20-dimensional bimodal target distribution. More signifi-

antly, the transitions of parameters during the sampling paths re-

ealed that the particles generated by the RWM–SMC and ARM–

MC samplers tend to collapse into local optimums, and the mix-

ng of the particles are quite poor ( Fig. 4 a and b). On the contrary,

he PEM–SMC algorithm exhibits relatively good mixing capabili-

ies and thus maintaining the diversity of the particles ( Fig. 4 c). We

urther tested the performances of the SMC samplers in dimension

 = 30 with particle number N = 1500. The results indicated that it

s difficult for the RWM–SMC, and ARM–SMC samplers to properly

stimate the 30-dimensional bimodal target distribution. In con-

rast, the PEM–SMC sampler illustrated relative good performances

n both properly identifying two modes of the target distribution

nd maintaining the mixing properties of particles (see details in

upplement 2 ). 

Thus, the PEM–SMC sampler seems to be more efficient in ex-

loring the high dimensional and complex parameter space than
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Fig. 5. Structure of the AWBM (modified according to Boughton, 1993 ). 
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ther SMC-samplers (i.e., RWM–SMC and ARM–SMC). This does

enefit from the ability of the genetic algorithm to learn efficiently

rom the historical evolutionary processes, which plays an impor-

ant role in the early stage of the evolution. That is, the good parti-

les (with a high probability value) tend to be stored in the popu-

ation for a relative long time, while the bad particles (with a low

robability value) will be easily eliminated from the population.

hus, the crossover operator in subsequent evolutionary processes

nsures us to construct better proposal distributions based on the

uidance of good particles stored in the population. In addition, the

utation operator provides a local updating step to help the parti-

les escape from local optimum and therefore increase the mixing

f the particles. The improved efficiency and effectiveness of the

EM-SMC algorithm give us confidence in its proper assessment of

arameter uncertainty in hydrologic modeling. 

.2. Case study 2: conceptual hydrologic modeling 

The second case study considers the Australian Water Balance

odel (AWBM), which was developed by Boughton (1993) to cal-

ulate daily runoff from daily rainfall data and daily evapotranspi-

ation estimates ( Fig. 5 ). The AWBM has 8 parameters that need to

e properly calibrated. Among them, six parameters represent the

ariability of soil moisture capacity over a watershed, which in-

lude three surface storage capacities ( C 1 , C 2 , C 3 ) and the fractional

reas associated with these capacities ( A 1 , A 2 , A 3 ). The other two

arameters are the baseflow index (BFI) and the daily recession

onstant ( K ), which is used to determine the proportion of base-

ow recharge from surface runoff and discharge from the baseflow,

espectively. Thus, the parameter vector associated with the AWBM

odel can be written as θ = ( C 1 , C 2 , C 3 , A 1 , A 2 , A 3 , BFI, K ). 

.2.1. Parameter uncertainty estimation 

In this section, we focus to investigate the performances of

he SMC samplers in identifying and estimating model parameters

ithout explicit assessment of forcing data error. Here, we con-

idered two different runoff time series in this analysis. The first

tudy serves as a benchmark experiment of the SMC samplers and

ses a fourteen years (1 January 1983–31 December 1996) record

f simulated dataset. The simulated runoff dataset was generated
rom the AWBM model using measured forcing data from the Bass

iver watershed in the South Gippsland Basin (52 km 

2 ) and pa-

ameter values given by Marshall et al. (2004) (Table A1 in Sup-

lement 3 ). The artificial runoff data are then corrupted with het-

roscedastic measurement error, the standard deviation of which

as taken to vary from 5% to 50% of the actual simulated values.

he second study explores the performance of the SMC samplers

sing the actual measured runoff dataset (see details in Bates and

ampbell, 20 01; Marshall et al., 20 04; Jeremiah et al., 2011 ). In all

umerical experiments, the SMC samplers were performed with

article number N = 400 and iteration S = 1000, where the initial

arameter values were randomly sampled from the noninformative

rior distribution ( Moradkhani et al., 2005; Salamon and Feyen,

009 ). 

For the artificial runoff dataset, two main conclusions can be

rawn from the analysis. First, the mixing capacity of the RWM–

MC sampler is quite poor ( Fig. 6 ), and it turned out not to be

ompetitive when applying in the hydrologic setting. Second, the

RM–SMC and PEM–SMC samplers are robust to noise in measure-

ents. The estimates of the model parameters derived with the

RM–SMC and PEM–SMC are very close to the actual values when

he standard deviation of measurement error varies from 5% to 30%

f the actual simulated values ( Fig. 7 ). Previous studies have illus-

rated that the overall uncertainty in runoff measurements mainly

ange from 5% to 20% ( Pelletier, 1987 ). Thus, the effect of measure-

ent uncertainty plays a marginal role in identifying real-world

ydrological model parameters for the ARM–SMC and PEM–SMC

amplers. These highlight that ARM–SMC and PEM–SMC samplers

re more suitable than the RWM–SMC sampler in making infer-

nces about the posterior parameter distribution of the hydrologi-

al models. In the following study, we thus mainly focus on inves-

igating the performances of the ARM–SMC and PEM–SMC sam-

lers in real-world hydrological setting. 

For the historical runoff observations, we used 5 years (1 Jan-

ary 1987–31 December 1991) data for model calibration, and 5

ears (1 January 1992–31 December 1996) data for model valida-

ion. To reduce sensitivity to state value initialization, the first 4-

ear data (1 January 1983–31 December 1986) was used as the

arm up period prior to the calibration data time series, during

hich no updating of the posterior density was performed. The
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Fig. 6. Transitions of the sampled parameter values in three randomly selected particles during the sampling path using (a) RWM–SMC, (b) ARM–SMC, and (c) PEM–SMC 

samplers without considering the input errors. The cross symbol at the right hand side indicate the actual parameter values used to generate the synthetic runoff data. 

Different particle is coded with a different symbol and color. 

Table 2 

Summary of the posterior marginal parameter distribution for the AWBM using historical runoff dataset with/without considering input uncertainty. 

Parameter Prior Range Without input uncertainty 

ARM–SMC 

Without input uncertainty 

PEM–SMC 

With input uncertainty 

ARM–SMC 

With input uncertainty 

PEM–SMC 

2.5% a median 97.5% a 2.5% a median 97.5% a 2.5% a median 97.5% a 2.5% a median 97.5% a 

C 1 0–200 19.3 80.4 193.6 20.8 81.7 163.2 57.2 82.5 102.7 86.4 92.5 99.8 

C 2 0–300 167.7 235.9 295.6 175.9 221.6 279.2 224.6 245.0 266.9 177.9 186.4 195.9 

C 3 0–50 0 0 110.4 236.9 317.6 158.9 263.2 363.2 451.3 512.0 602.8 609.5 632.8 656.7 

A 1 0–1.0 0.02 0.15 0.28 0.07 0.16 0.25 0.11 0.14 0.17 0.22 0.23 0.25 

A 2 0–1.0 0.17 0.50 0.65 0.30 0.50 0.64 0.18 0.24 0.32 0.22 0.24 0.27 

A 3 0–1.0 0.14 0.34 0.66 0.13 0.34 0.62 0.53 0.62 0.68 0.49 0.53 0.55 

K 0–1.0 0.80 0.84 0.89 0.82 0.86 0.89 0.94 0.95 0.97 0.91 0.92 0.93 

BFI 0–1.0 0.35 0.39 0.43 0.35 0.38 0.43 0.50 0.53 0.54 0.56 0.57 0.58 

B 0.25–2.5 N/A N/A N/A N/A N/A N/A 0.68 1.36 1.94 0.91 1.35 1.85 

a 2.5% and 97.5% represents the 2.5 and 97.5 percentile of the posterior marginal parameter distribution; 
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posterior marginal parameter distributions derived by each SMC

sampler are shown as histograms in Fig. 8 and summarized in

Table 2 by posterior medians and 95% probability intervals. The

posterior distributions of the individual parameters obtained by

the two samplers are very similar and occupy only a relatively

small region interior to the uniform prior distributions ( Table 2

and Fig. 8 ), suggesting the two SMC samplers were in most cases

successful in reducing the assumed prior uncertainties of the pa-

rameters values. 
d  
To understand the influence of parameters uncertainty to the

imulation result of AWBM predictive uncertainty, Fig. 9 shows the

5% hydrograph prediction uncertainty intervals associated with

he posterior parameters ranges for the selected calibration and

valuation periods. We can observe that the ensemble runoff pre-

ictions using the posterior parameters derived by the two SMC

amplers are very similar and they all reasonably track the his-

orical runoff dynamics (dark solid circlers). However, only a small

ortion of observed runoff data can be bracketed by the 95% hy-

rograph prediction uncertainty ( Table 3 and Fig. 9 ). The findings
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Fig. 7. Histograms of the marginal posterior parameter distributions of the AWBM model derived by (a) ARM–SMC and (b) PEM–SMC samplers at the end of simulation 

using synthetic runoff dataset without considering the input errors. The cross symbol at the bottom side indicate the actual parameter values used to generate the synthetic 

runoff data. The dash line indicates the median parameter values estimated by the SMC samplers. 

Fig. 8. Histograms of the marginal posterior parameter distributions of the AWBM model derived with (a) ARM–SMC and (b) PEM–SMC samplers at the end of simulation 

using historical observations without considering the input errors. 

Table 3 

Statistics of model performances using posterior median parameter values obtained by the two SMC samplers with/without considering input uncertainty. 

Without input uncertainty With input uncertainty 

Calibration period Validation period Calibration period Validation period 

ARM–SMC PEM–SMC ARM–SMC PEM–SMC ARM–SMC PEM–SMC ARM–SMC PEM–SMC 

Slope 0.68 0.70 1.14 1.13 0.73 0.76 0.82 0.84 

R 2 0.69 0.70 0.66 0.66 0.71 0.73 0.68 0.70 

RMSE 7.39 7.39 5.95 5.89 6.99 6.18 4.29 4.16 

Bias 1.02 1.03 0.88 0.83 −0.38 −0.23 0.15 0.07 

Bracketing Percentage 14.4 13.8 14.2 12.9 22.9 20.5 21.2 20.8 

Slope: the slope of regression line between the observed and simulated runoff; R 2 : the coefficient of determination; RMSE: root-mean-square error; Bias: mean 

bias between the observed and simulated runoff; Bracketing Percentage: the percentage of observations fall in the 95% predication uncertainty bounds. 
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re consistent with previous studies (i.e., Ajami et al., 2007; Vrugt

t al., 2008 ), and reveal a considerable amount of uncertainty in

oth the model structure and the forcing data. 

.2.2. Simultaneously considering parameter and input uncertainty 

stimation 

In this section, we investigate the applicability of the SMC sam-

lers in simultaneous estimation of the AWBM model parameters

nd input uncertainty within the system. In this study, the rain-
all forcing data error was implemented by using a single rainfall

ultiplier for each storm event ( Kavetski et al., 20 02, 20 06; Ajami

t al., 2007; Vrugt et al., 2008 ). That is, each storm is assigned a

ifferent rainfall multiplier β j ( j = 1, 2, …, ς ) which uniformly dis-

ributed over the range between 0.25 and 2.50, and these values

re added to the vector of model parameters θ to be optimized;

ence θ = [ θ ; β]. In the 5 years calibration period (1 January 1987–

1 December 1991), a total of ς = 66 storm events were identi-

ed for the Bass River watershed, which resulted in the number
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Fig. 9. Comparison of observed (dots) and 95% hydrograph prediction uncertainty intervals (dark gray region) by (a) ARM–SMC and (c) PEM–SMC during selected calibration 

period, and (b) ARM–SMC and (d) PEM–SMC during selected evaluation period when only considering parameter uncertainty. 

Fig. 10. Transitions of the sampled model parameter values in three randomly selected particles during the sampling path using (a) ARM–SMC and (b) PEM–SMC samplers 

when accounting for the input errors. The cross symbol at the right hand side indicate the actual parameter values used to generate the synthetic runoff data. Different 

particle is coded with a different symbol and color. 
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Fig. 11. Histograms of the marginal posterior parameter distributions of the AWBM model derived with (a) ARM–SMC and (b) PEM–SMC samplers at the end of simulation 

when accounting for the input errors. The cross symbol at the bottom side indicate the actual parameter values used to generate the synthetic runoff data. The dash line 

indicates the median parameter values estimated by the SMC samplers. 

Fig. 12. Posterior median estimates (closed circles) and 95% probability intervals (cross) for the rainfall multipliers obtained by the (a) ARM–SMC sampler and (c) PEM–SMC 

sampler. The triangle indicates the actual rainfall multiplier values used to generate the synthetic runoff data. (b) and (d) showed the regression between the estimated 

median and actual values of the rainfall multipliers for the ARM- and PEM–SMC, respectively. 
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f estimated parameters increasing up to 73. To verify whether the

MC samplers are computationally feasible, synthetically generated

unoff data are used first, followed by the actual measured runoff

ataset. To generate the synthetic runoff dataset, a multiplier vec-

or was first drawn using Latin hypercube sampling within [0.25,

.50] ς ( ς = 66). Then, it was combined with the observed rainfall

epths over the basin to generate a new rainfall hyetograph. The

ainfall record was subsequently used with randomly sampled val-

es of the AWBM parameters (Table A2 in Supplement 3 ) to cre-

te a 5-year time series of synthetic runoff data. In both the syn-

hetic and the actual studies, the SMC samplers were performed

ith particle number N = 600 and iteration S = 2000. 
l  
For the synthetic runoff dataset, it is observed that the particles

enerated by the SMC samplers tend to converge to the limiting

istribution after 1200 iterations ( Fig. 10 ). However, the ARM–SMC

ampler provides some differing parameter estimates from their

ctual values, in particular for parameters C 1 , C 2 and A 2 , while the

ifferent actual values of the AWBM model parameters are well de-

ned by the PEM–SMC sampler and display very little uncertainty

 Fig. 11 ). More significantly, it is difficult for the ARM–SMC sam-

ler to properly converge to the actual values of the rainfall multi-

liers (only 11 out of 66 are well identified). On the contrary, the

ajority of the rainfall multiplier values (41 out of 66) are well

dentified by the PEM–SMC sampler with its failures due to the

ow values in either rainfall depths or runoff observations ( Fig. 12 ).
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Fig. 13. Histograms of the marginal posterior parameter distributions of the AWBM model derived with (a) ARM–SMC and (b) PEM–SMC samplers at the end of simulation 

using historical observations when accounting for the input errors. 

Fig. 14. Box plots of the marginal posterior distributions of the rainfall multipliers for each storm event obtained by (a) ARM–SMC and (c) PEM–SMC. Histograms of all 

combined storm multipliers estimated by (b) ARM–SMC and (d) PEM–SMC. 
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Thus, the PEM–SMC sampler is more robust than the ARM–SMC

sampler for the case in simultaneously estimating both the AWBM

model parameters and the rainfall multipliers. More details about

the performances of the SMC samplers were presented in Supple-

ment 3 . 

For the historical runoff observations, the calibration procedure

is similar to that used in Section 4.2.1 . The posterior marginal pa-

rameter distributions derived by the SMC samplers are given in

Fig. 13 and Table 2 . The sampled rainfall multipliers for each storm

are presented as box plots in Fig. 14 , as well as providing his-

tograms of all combined rainfall multipliers. Comparing with the

results in Section 4.2.1 , we can observe that: (1) the explicit con-

sideration of the input error changes the final estimated marginal

distribution of the model parameters, which is most evident for

the parameters C 3 , K and BFI Table 2 ); ( (2) the 95% prediction

uncertainty interval of the parameters obtained by the SMC sam-

plers decreases when rainfall estimates are directly inferred from

the observed discharge data Table 2 ); ( (3) the posterior distribu-

tion of the model parameters and the rainfall multipliers derived
y the PEM-SMC sampler are very narrow and close to normal

n comparison with that obtained by the ARM–SMC sampler ( Fig.

3; Fig. 14 a and c), indicating that the runoff observations con-

ain sufficient information for the PEM–SMC sampler to simulta-

eously constrain both model parameters and rainfall multipliers;

nd (4) the median posterior values of the combined rainfall mul-

ipliers obtained by the two SMC samplers are very similar and

arger than 1 ( Fig. 14 b and d), indicating the observed rainfall

epths are lower than our inferred rainfall from the runoff data

n average. 

The 95% runoff predictive uncertainty ranges associated with

odel parameter and input uncertainty for selected calibration and

valuation periods are presented in Fig. 15 . Here, the rainfall multi-

lier for each individual rainfall storm during the evaluation period

as sampled from the histograms presented in Fig. 14 b and d, and

as then combined with the observed rainfall record to generate

 possible realization of rainfall hyetograph. Looking at Fig. 15 and

omparing with Fig. 9 , we can observed that the 95% prediction in-

ervals are slightly narrow here and show a much better coverage
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Fig. 15. Comparison of observed (dots) and 95% hydrograph prediction uncertainty intervals (dark gray region) by (a) ARM–SMC and (c) PEM–SMC during selected calibration 

period, and (b) ARM–SMC and (d) PEM–SMC during selected evaluation period when accounting for the input errors. 
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f the low runoff observations (i.e., days 1–81 for calibration pe-

iod and days 1–50 for the validation period). The summary statis-

ics presented in Table 3 showed that the observed runoff data

hat fall in the 95% prediction intervals has increased by about

0% for the two SMC samplers when we account for input uncer-

ainty. Also, a better model performance is obtained when rain-

all multipliers are simultaneously inferred with the model param-

ters (i.e., a 5% −30% reduction in RMSE is observed for the two

MC samplers). Noticeably, the model performances with parame-

ers and input uncertainty determined by the AWR–SMC sampler

nd the PEM–SMC sampler are very similar. This phenomenon is

ell known as “equifinality” in hydrology mainly due to the inad-

quacies in model structure ( Beven and Freer, 2001; Bastola et al.,

011 ). Thus, further analysis about model structural error is needed

n future studies. This is beyond the scope of current paper, and

e will consider using multiple different hydrological models to

educe the uncertainty caused by the model structure in future

tudies. 

. Conclusions 

This paper has presented a sequential Monte Carlo sampler,

hich is entitled the Particle Evolution Metropolis Sequential

onte Carlo (PEM–SMC) algorithm. The sampler incorporates some

ttractive features of genetic algorithm, differential evolution algo-

ithm and Metropolis–Hasting algorithm into the framework of se-

uential Monte Carlo to evolve a population of particles to approx-

mate the posterior parameter distributions. We proved that the

ampler admits the target distribution at each iteration ( π s ( θ ), s = 1,

, …, S ) to be a stationary distribution. The performance of the

EM–SMC in estimating the posterior parameter distribution was

ompared with the other two SMC samplers (i.e., RWM–SMC, and

RM–SMC samplers) through two case studies of increasing com-

lexity. 

The first case study, a synthetic bimodal normal distribution

howed that the PEM–SMC sampler has the ability to infer the

nown target distribution where the parameter surface is ex-

remely complex with many local optima. For the ARM–SMC sam-
ler, the candidates are drawn from the Gaussian proposal distri-

ution with a fixed spatial orientation. Thus, the ARM–SMC sam-

ler is more likely to falsely converge to a local optimum, and only

ne mode can be identified in dimension d = 20 ( Fig. 3 b). This in-

icated that the ARM–SMC sampler can potentially experience dif-

culties in exploring the non-Gaussian parameter space with mul-

iple modes. In addition, the difficulty in ensuring the weighted

ample covariance matrix to be symmetric and positively semi-

efined make the ARM–SMC sampler thoroughly fails for high di-

ensional problems ( d = 30). For the RWM–SMC, the candidates

re generated from an isotropic random walk, which can effectively

educe the risk of false convergence to local optima. However, the

WM–SMC algorithm shows relative poor mixing property, and it

s generally difficult for the individual particles to traverse the pa-

ameter space ( Figs. 1 and 3 ). This leads the explorative capability

f the RWM–SMC sampler through the feasible parameter space is

ower than that of the ARM–SMC and PEM–SMC samplers. 

A second case study illustrated the utility of the PEM–SMC sam-

ler when applied to conceptual rainfall–runoff modeling by only

onsidering model parameter uncertainty and simultaneously con-

idering both model parameter and input data uncertainties. The

ynthetic test reveals that the improved efficiency and effective-

ess of the PEM–SMC sampler can successfully reduce the prior

ncertainties in parameter and input by using information con-

ained in observed runoff data ( Jeremiah et al., 2011 ). On the con-

rary, the RWM–SMC sampler turned out to not competitive when

pplying in the hydrologic setting due to its low capacity in ex-

loring parameter space. This is consistent with the results of the

ynthetic bimodal normal distribution. The ARM–SMC sampler ex-

erienced difficulties in simultaneously estimating both the model

arameters and the input uncertainties. The majority of the ac-

ual values of the rainfall multipliers fall out the 95% probabil-

ty intervals obtained by the ARM–SMC sampler ( Fig. 12 ). For his-

orical runoff observations, the estimated marginal distribution of

he model parameters by accounting input errors was different

rom that estimated by only considering parameter uncertainty

 Table 2 ). In addition, the observed runoff data that fall in the
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95% prediction intervals has increased by about 50% for the two

SMC samplers when we account for input errors ( Table 3 ). These

results are consistent with previous studies ( Ajmni et al., 2007;

Vrugt et al., 2008 ). However, the model performances with dif-

ferent parameter and rainfall multiplier values determined by the

ARW–SMC and PEM–SMC samplers are very similar. This indicates

that some physical processes of the watershed may be not ade-

quately represented by the AWBM model, and further analysis is

needed to address the model structure uncertainty by using the

Bayesian model averaging approach ( Ajmni et al., 2007; Qi et al.,

2018 ), the integration of copulas and Bayesian model averaging

approach ( Madadgar & Moradkhani, 2013; Madadgar et al., 2014 ),

sequential Bayesian methods ( Hsu et al., 2009; Wei et al., 2012 )

and data assimilation methods ( Bell et al., 2004; Kuppel et al.,

2013; Cardinali et al., 2014; Abbaszadeh et al., 2018 ). Essentially,

Bayesian model averaging approach is a post-processing of the in-

dividual model predictions in a selected ensemble by using the

Expectation–Maximization (EM) algorithm ( Raftery et al., 1997 ).

Thus, the proposed SMC sampler can be easily extended to the

studies of total uncertainty assessment including model parame-

ters, input and structural uncertainty, and we will present related

results in the coming papers. Finally, the computational execution

time required by the PEM–SMC sampler is about two times of that

needed by the RWM–SMC and ARM–SMC samplers because of the

inclusion of some extra operators in move step of the PEM–SMC

sampler. However, a further significant speedup can be obtained if

the PEM–SMC is executed on a parallel machine or a network of

computers due to its inherently parallel. This is especially true for

real-world hydrological problems where obtaining the proper pa-

rameter posterior distributions often requires a significant amount

of time (i. e., about 20 hours for simultaneously estimating both

parameter and input uncertainties of the AWBM model for the

PEM–SMC sampler). 
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